首页> 外文OA文献 >Hyperbolic Polynomials Approach to Van der Waerden/Schrijver-Valiant like Conjectures : Sharper Bounds, Simpler Proofs and Algorithmic Applications
【2h】

Hyperbolic Polynomials Approach to Van der Waerden/Schrijver-Valiant like Conjectures : Sharper Bounds, Simpler Proofs and Algorithmic Applications

机译:双曲多项式逼近Van der Waerden / schrijver-Valiant   像猜想:更尖锐的边界,更简单的证明和算法   应用

摘要

Let $p(x_1,...,x_n) = p(X), X \in R^{n}$ be a homogeneous polynomial ofdegree $n$ in $n$ real variables, $e = (1,1,..,1) \in R^n$ be a vector of allones . Such polynomial $p$ is called $e$-hyperbolic if for all real vectors $X\in R^{n}$ the univariate polynomial equation $P(te - X) = 0$ has all realroots $\lambda_{1}(X) \geq ... \geq \lambda_{n}(X)$ . The number of nonzeroroots $|\{i :\lambda_{i}(X) \neq 0 \}|$ is called $Rank_{p}(X)$ . A$e$-hyperbolic polynomial $p$ is called $POS$-hyperbolic if roots of vectors $X\in R^{n}_{+}$ with nonnegative coordinates are also nonnegative (the orthant$R^{n}_{+}$ belongs to the hyperbolic cone) and $p(e) > 0$ . Below$\{e_1,...,e_n\}$ stands for the canonical orthogonal basis in $R^{n}$. Themain results states that if $p(x_1,x_2,...,x_n)$ is a $POS$-hyperbolic(homogeneous) polynomial of degree $n$, $Rank_{p} (e_{i}) = R_i$ and $p(x_1,x_2,...,x_n) \geq \prod_{1 \leq i \leq n} x_i ; x_i > 0, 1 \leq i \leq n, $ then the following inequality holds $$ \frac{\partial^n}{\partialx_1...\partial x_n} p(0,...,0) \geq \prod_{1 \leq i \leq n} (\frac{G_{i}-1}{G_{i}})^{G_{i} -1} (G_i = \min(R_{i}, n+1-i)) . $$ This theorem is a vast(and unifying) generalization of as the van der Waerden conjecture on thepermanents of doubly stochastic matrices as well Schrijver-Valiant conjectureon the number of perfect matchings in $k$-regular bipartite graphs . The paperis (almost) self-contained, most of the proofs can be found in the {\bfAppendices}.
机译:令$ p(x_1,...,x_n)= p(X),X \ in R ^ {n} $是在$ n $实变量中度数$ n $的齐次多项式,$ e =(1,1, ..,1)\在R ^ n $中是所有人的向量。如果对于R ^ {n} $中的所有实矢量$ X \,单变量多项式方程$ P(te-X)= 0 $具有所有实根$ \ lambda_ {1},则此类多项式$ p $被称为$ e $-双曲线。 (X)\ geq ... \ geq \ lambda_ {n}(X)$。非零根数$ | \ {i:\ lambda_ {i}(X)\ neq 0 \} | $的数量称为$ Rank_ {p}(X)$。如果R ^ {n} _ {+} $中具有非负坐标的向量$ X \的根也是非负的,则A $ e $-双曲线多项式$ p将被称为$ POS $-双曲线(orthant $ R ^ {n} _ {+} $属于双曲锥),并且$ p(e)> 0 $。 $ \ {e_1,...,e_n \} $以下代表$ R ^ {n} $中的规范正交基。主要结果表明,如果$ p(x_1,x_2,...,x_n)$是度数$ n $的$ POS $-双曲(齐次)多项式,则$ Rank_ {p}(e_ {i})= R_i $和$ p(x_1,x_2,...,x_n)\ geq \ prod_ {1 \ leq i \ leq n} x_i; x_i> 0,1 \ leq i \ leq n,$,则以下不等式成立$$ \ frac {\ partial ^ n} {\ partialx_1 ... \ partial x_n} p(0,...,0)\ geq \ prod_ {1 \ leq i \ leq n}(\ frac {G_ {i} -1} {G_ {i}})^ {G_ {i} -1}(G_i = \ min(R_ {i},n + 1-i))。 $$这个定理是对双重随机矩阵的永久性上的van der Waerden猜想以及$ k $-正则二分图中完全匹配数的Schrijver-Valiant猜想的广泛(统一)推广。纸质文件(几乎)是独立的,大多数证明可以在{\ bfAppendices}中找到。

著录项

  • 作者

    Gurvits, Leonid;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号